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IX. On the Proof of the Law of Errors of Observations.
By Moreax 'W. Crorron, F.R.S.

Received March 24,—Read April 22, 1869,

1. So much has been published upon the Theory of Errors, that some apology seems to.
be required from a new writer who does not profess to have arrived at any results which
were unknown to his predecessors. Nevertheless, so great, as is well known, are the
difficulties of the theory, whether we seek to form a correct estimate of the principles;
on which it rests, or to follow the subtle mathematical analysis which has been found
ihdispensable in reasoning upon them, that any contribution which tends to simplify
the processes, without weakening their logical exactness, will probably be considered
of some value. My object in this paper is to give the mathematical proof, in its most
general form, of the law of single errors of observations, on the hypothesis that an error.
in practice arises from the joint operation of a large number of independent sources
of error, each of which, did it exist alone, would produce errors of extremely small
amount as compared generally with those arising from all the other sources combined.
Now this proof is contained in a process given for a different object, namely, Poisson’s
generalization of LAPLACE’s investigation of the law of the mean results of a large number
of observations, to be found in his * Recherches sur la Probabilité des jugements,’ and
which is reproduced in Mr. TopHUNTER'S valuable ¢ History of the Theory of Probability.”

Tt is obvious that we should altogether restrict the generality of the proof, confining
it merely to a few artificial and conventional cases, if we were to suppose each source of
error to give positive and negative errors with equal facility, or to assume the law of error
(even supposing it unknown) to be the same for all the sources. None of the processes,
therefore, contained in the 4th chapter of the ¢ Théorie Analytique des Probabilités’ are
of sufficient generality for our purpose, though some writers have so employed them ; nor
will the method apply here which Lestie ELL1s has given in his memoir ¢ On the Method
of Least Squares” (Camb. Phil. Trans. 1844), based upon FOURIER'S theorem, on account
of the assumption of equal facility for positive and negative errors. The proof which
follows will be found, I think, of full generality,—the only cases excluded being incom-
patible with the existence of the exponential law (see art. 7), and at the same time
greatly simpler than Poisson’s, dispensing with his refined and difficult analysis*.

9. Tt is remarkable that the well-known exponential function which is now pretty

# The length of this communication may seem at variance with the statement that the proof here given is a
simpler one than those of former writers, Still I think it will be found to be so on examination ; the length of
the paper arises from fuller explanations being given than is usually the case. I am persuaded that the doubts

and misconceptions which have prevailed so extensively with relation to this subject have been in great part
oceasioned by the extreme brevity and scanty explanation of the great writers who have treated it,
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176 MR. M. W. CROFTON ON THE PROOF OF

generally received among mathematicians as expressing the law of frequency of single
errors of observation, does not seem to have been distinetly given by any one of the three
great philosophers LAPLACE, GAuss, and PoissoN (who may be called the founders of
the Theory of Errors) as being, in their opinion, the expression of that law. It has
been erroneously supposed, as Lestie Eruis points out, that Gauss’s and LAPLACE’S
proofs of the method of Least Squares depend upon that assumption. It is true that
Gauss’s first method, in the ¢ Theoria Motiis,’ does require it; but he does not present
that method as other than tentative and hypothetical : and later, in the ¢ Theoria Com-
binationis Observationum,” he says, speaking of the law of single errors, *plerumque
incognita est.”

" As, however, this law of error seems in our day to have been adopted by general
consent, some inquiry into the grounds on which its validity rests will be appropriate
here. And first I would remark that it can scarcely be maintained that any attempt
hitherto made to establish this law independently of the hypothesis I have named in
art. 1 has been successful. 'We may pass by Gauss’s proof in the ¢ Theoria Motis,
which shows that the law must hold ¢f we ¢ake as an axiom that the arithmetical mean
of several observations is the most probable result. Now this really is not an axiom,
but only a convenient rule which is generally near the truth: thiswe see by considering
any case in which we are certain that the errors do not follow the exponential law; does
the mind see here & priori that the rule does not give the most probable result? It
seems certain that we should have just the same confidence in it here as in any case;
yet GAUSS'S proof shows that it does not give the most probable result*. It should
indeed be stated that Gauss himself (as might have been expected from that acute and
accurate mind) is very far from asserting the above assumption to be an axiom; conse-
quently he does not give his proof as more than hypothetical. He only states that the
rule is generally accepted—* axiomatis loco haberi solet hypothesis.” A method of
remarkable simplicity was given by Sir J. HERSCHEL in a very interesting review of
QuETELET’S ¢ Letters on Probabilityf,” which conducts to the same law of error by means
of one or two bold assumptions; but striking as the coincidence is, it can hardly be
seriously viewed as a demonstration ; nor is it formally so presented by its distinguished
author. However, the methods both of Gauss and Sir J. HERSCHEL are of great interest
to the natural philosopher, as showing that certain & priori mathematical assumptions
of a very s1mple kind lead to the same law of error which reasoning based on a study of
the facts which surround us also points out as expressing, at least approximately, what
genelally does occur @ rerum naturd: though we can see no necessity that the facts

* See Erws, loc. cit. p. 207.

T Edinburgh Review, July 1850. See a criticism by Lescie Ercts in the Philosophical Magazine, vol. xxxvii,
Also Boorr (Edinb. Trans. vol. xxi.) and Troxsox and Tarr (Natural Philosophy), who speak more favourably.
M. Quererer’s ¢ Lettres” will amply repay a perusal ; in connexion with our ‘present inquiry, he points out that
not only errors of observations, but the variations of many other fluctuating magnitudes, such as the stature of
men, the temperature of the weather, &c. from their mean values, seem to follow the same law. If this be so,
the inference seems legitimate that these divergences from the mean types, or errors of Nuature herself, as they
may be called, are produced in each case, not by one or two, but by a vast number of hidden coexisting causes.
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should be so, it being quite easy to conceive a different economy of nature in which no
such accordance would subsist *. :

It is possible & prior: to conceive that the law of single errors of observation might be
of any form whatever, varying with each kind of observation: how far it is true that in
practice one general law will be found to prevail, is essentially a question of facts—an
inquiry, not into what might be, but what ¢s. Now the hypothesis above mentioned,—
namely, that errors in rerum naturd result from the superposition of a large number of
minuter errors arising from a number of independent sources,—when submitted to
‘mathematical analysis, leads to the law which is generally received; as far therefore as
this hypothesis is in accordance with fact, so far is the law practically true. Fully to
decide how far this hypothesis does agree with facts is an extremely subtle question in
philosophy, which would embrace not only an extended inquiry into the laws of the
material universe, but an examination of the senses and faculties of man, which form an
important element in the generation of error. Still, without pretending to enter on a
demonstration of the truth of this hypothesis, a few reflections upon the facts, especially
in the case of Astronomy (which is par excellence the science of observation, and where
accordingly the lessons of experience are the clearest and most complete), will, I think,
at least convince us of its reasonableness in certain large classes of errors of observations.
Now if we attend to what has taken place in the history of astronomical observation, we
find that the gross errors of the earlier observers proceeded mainly from three or four
principal causes—for instance, refraction, imperfect measurement of time, and the use
of the naked eye in pointing to objects. "When these few capital occasions of error were
removed (at least approximately), refraction being discovered and allowed for, and the
pendulum and telescopic sights introduced, it was found that observations at once
attained a high order of accuracy, showing that the principal sources of error had been
eliminated. It would seem, in fact, that in coarse and rude observations the errors
proceed from a very few principal causes; and in this case, consequently, our hypothesis
will probably represent the facts only imperfectly, and the frequency of the errors will
only approximate roughly and vaguely to the law which follows from itf. But when

* The extreme simplicity of the exponential relation itself, whether considered as expressing the law of single
errors, or that of the mean results of a large number of observations, as contrasted with the long and difficult
methods by which it was established, has naturally led to several attempts to dispense with or simplify the
latter ; in some the hypothesis we here adopt is taken as a basis; but, se far as the present writer is aware,
every process given, except Porsson’s, fails in generality. In a recent Memoir on the Law of Frequency of
Error by Professor Tarr (Edin. Trans. vol. xxiv.) (where, it should be stated, the learned author speaks with
some hesitation, and only gives his method as an attempt), it is assumed that each of the elementary errors
which are combined can be assimilated to the deviation from its most probable value of the number of white
balls among a given large number of balls drawn from an urn, which contains white and black in a given pro-
portion, It is then shown (as indeed is done in Larracw’s 3rd chapter) that this error follows the exponential
law, Thus the proof only applies to the combination of a number of elementary errors, each of which follows
that law. But it is quite certain that many simple errors do not follow that law ; hence the method is altogether
defictent in generality.

+ We cannot, however, assert this positively, if there is reason to believe that the error which arises from
each principal cause is itself a composite error, which certainly is often the case. The ¢ error in time,” for
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‘astronomers, not content with the degree of accuracy they had reached, prosecuted their
researches into the remaining sources of error, they found that, not three or four, but a
great mumber of minor sources of error, of nearly coordinate importance, began to reveal
themselves, having been till then masked and overshadowed by the graver errors which
had been now approximately removed *. It was as if a small number of forest trees had
been cut down, leaving an innumerable growth of shrubs and brushwood at their feet,
remaining to be cleared. There were errors of graduation, and many others, in the
construction of instruments; other errors of their adjustments; errors (technically so
called) of observation; errors from changes of temperature, of weather, from slight
irregular motions and vibrations; in short, the thousand minute disturbing influences
with which modern astronomers are familiar, and which it is superfluous to recapitulate
here. Many of these are known and allowed for, or eliminated, at least approximately,
in practical astronomy; still we seem to be justified in considering the error which
remains as the result of a great number of yet minuter errors, each inconsiderable in
itself. Thus a cursory view of the nature of astronomical errors, and the light which
this throws on various cognate classes of observations, seem to lead to the conclusion
that the above hypothesis will be found to hold, generally, in the case of refined and
delicate observations. No doubt much more would be necessary to justify us in asserting

instance, is certainly not a simple error, but one resulting from the joint action of several causes, one or more
of which we can conceive detected and allowed for, leaving the others in operation. An error may thus arise
from the superposition of only three or four component errors, which at first sight are of simple origin, but in
reality represent each a group of minor errors; and the hypothesis would then hold. It is questionable whether,
among the causes which in practice vitiate any observation, any simple error ever does enter, of considerable
magnitude and importance as compared with the others combined ; such, for instance, as would be the error
produced in the time (or through the time on some astronomical magnitude) by the pendulum being & of an
inch too long or too short, every thing else being pretty accurate. If it be said that ignorance or negligence
might produce such a result, we may answer that such negligence or ignorance would make itself felt in other
ways also: one such error Wwould not stand alone. Isolated acts of meglect by a careful observer would come
under the head of occasional errors, as explained further on.-

It seems very difficult to discern, & priori, the nature of the errors incurred in estimating magnitudes by the
eye, or of errors arising from the imperfection of our senses, such as those incurred in pointing to a star with
the nalked eye. It is quite possible that such errors may arise each from several sources, though thelr nature be
hidden from our view.

* A similar law to that mentioned above seems to prevail in many kindred cases. Thus in the successive
improvements in artillery, machinery, &ec., in proportion as the greater sources of imperfection: and inaccuraey
are understood and remedied, the number of minor disturbing influences which are thus rendered perceptible,
and still vitiate the results, though to a less extent, increases rapidly. We may even trace a sort of analogy
here in various phenomena both of the moral and material universe, which apparently have no.bearing on the
point we are considering. Thus the principal wants of human nature, the necessaries of life in fact, are very
few; and so long as these are supplied with difficulty, minor wants are scarcely felt, as we see in uneivilized
communities : but when the greater wants are satisfied, the number and variety of the secondary requirements
«of our nature are visible in the multitudinous productions of civilized life, The diseases which mainly operate in
shortening human existence are very few in number; but could they be extirpated, the number of minor causes;
of nearly coordinate importance, which still would influence the rate of mortality would be very large. The
statistics of crime, and many other phenomena, would give rise to remarks: of a similar nature,
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this absolutely ; thus it is not enough for our purpose to show, could we do so conclusively,
that each error in practice is compounded of a large number of smaller errors; we must
also show that they are independent, at least for the most part. Thus we may conceive
one of the minute errors affecting an astronomical magnitude to be an error in the
refraction proceeding from a rise in the general temperature, and another affecting the
same observation to be an error of time arising from the expansion of the pendulum
through the same cause; now these two minute errors are not independent, and would
have to be mathematically'combined in quite a different way from two that were inde-
pendent; and, indeed, such a change of temperature would influence the actual error of
the observation in other ways also. However, we may at least safely conclude that the
hypothesis in question is not a mere arbitrary assumption, but a reasonable and probable
account of what does in fact take place in the case of careful and refined observations.

3. In proceeding to submit this hypothesis to mathematical analysis, the minute simple
errors which go to form the observed compound error will be assumed to follow each
its own unknown law, expressed by different unknown functions of the utmost generality *:
positive and negative values of each error will not be assumed equally possible; on the
contrary, the cases will be included, as obviously ought to be done, of minute disturbing
influences which always cause the observed magnitude to err in excess, and of others
which cause it to err onlyin defect. I will exclude all mention of the term probability,
and will consider solely the frequency or density of the error, viewed as a function of its
magnitude.

Let any magnitude which has to be determined by observations affected with some
one cause of error (simple or compound) be represented by the line BA ; '

;i) C A N D

let a large number of such observations be made, and let the observed values be repre-
sented by a number of lengths BA', measured from B: it will be found in general that
in the neighbourhood of A the line will be dotted over with a multitude of points A,
the distance AA' being the error in each case. These dots will begin at some point C,
and end at some point D, which generally are on opposite sides of A, but may both be
at the same side. Between C and D the dots will be distributed over CD with a varia-
ble density: this density, at any point A', will represent the frequency or density of errors
of magnitude AA'.

If at every point A’ we erect an ordinate A'P representing the density at A', we shall
thus trace out a locus or curve C'D’, whose equation we may call, taking A as origin,

e W ¢ )

Y,
P
'
/T/’f S~
C Y x

* With regard to the limits or amplitudes of the errors, see note on art. 7.
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This we may call the curve or function of Error*. Itis of course generally discontinuous,
as it is only to include values of # between the points C, D. The function ¢(a) strictly
speaking should vanish for all values of # beyond C and D ; however, we shall not require
any consideration of the analytical methods of expressing such functions. If N be the
number of observations taken, and if we put AD=a, AC=5, then as ydz denotes the
number of errors lying between z and 2+ dz,

N:ja;p(x)dw. N )
It is well to notice that, if C be any constant, the equation
y=Ce(2)
really is the same function of Error as (1), the number of observations only being altered.
4. In order not unduly to limit the generality of the investigation, it is necessary
further to study the nature of the possible ways in which the dots we have spoken of as
representing the observations may be scattered along the line CD, in the case of various
unknown simple causes of error; noting also what becomes of the function ¢(z) and the
curve O'D' in each case. And first, in many cases the dots will be distributed conti-
nuously along CD, thus giving a curve without gaps or intervals. It is by no means
necessary that this curve should descend towards CD at its two extremities more than in
the middle; in other words, the extreme values of a simple Error are not always less
probable than the intermediate ones. There may be cases where the extreme values are
the most probable; for instance, the Error occasioned by supposing a point fixed, which
is in reality performing extremely minute and slow oscillations about its mean position.
But besides the cases of continuous distribution, there are others, not only conceivable,
but which we may be sure do actually occur, in which a function or curve does not
assist our conceptions, and we shall do better merely to consider the points or dots
themselves. There may be what is called a constant Error; that is, some cause which
gives the observation always too great (or too small) by the same fixed minute amount:
the distribution here is simply a group of N coincident points somewhere on CD. Ora
certain cause may only admit of two or more definite values for the error; the distribu-
tion will be two or more groups of coincident points, the numbers in each group
being equal or unequal. Again, an important class of Errors are those which may be
called occasional Errors, that is, produced by intermittent causes not always in operation.
In such a case, if N observations be made, a certain number of them (say n) are unaffected
by the Exror; the remaining N-—n, made when the cause is in operation, we may suppose
represented by dots continuously or discontinuously distributed ; we have then a group
of n coincident points at A, besides a number N —#n distributed in some way over CD.
Errors of mistake or forgetfulness, and many others also, are of this description.

* The word * error” is sometimes used for shortness to express a source of error. To avoid confusion we
may write it with a capital E, when used in this sense. Thus ¢ an Error” will mean a source of error, or the
assemblage of actual errors (or the eurve or function symbolizing them) which that source produces in a large
number of trials, and which form a visible manifestation or representation of it: “an error” will mean a par-
ticular magnitude:
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5. If we alter the ordinate and abscissa of every point in the curve C'D' in a given
ratio, changing the limits @, —& of the Error in the same ratio, we find the curve ¢'d’

represented by
Yy €
7: ¢ (;) s e e e e e e e e e e e (3)
|

4
CI

o a’r

c ¢ A 4 D

which may be called a similar Error to (1) or C'D'. The number of observations will
be different in the two cases, being represented by the areas of the two figures. We
may find it convenient to suppose the number of observations the same; if so

1 _rx
y=7¢(;>............(4)
will be a similar function of Error to y=¢(z), the number of observations being the
same for both, the limits of the error in (3) and (4) being ia, —b.

6. To find the function of Error resulting from the combination of a given Error whose
equation s

y,:f(a;',)............(5)’
(the limits beiny + oo ) with another independent Error

y:cp(x), e e e e .......,(6)

whose limits are a, —b.

a

x4

Ci Al @ Xk D V\\
R

We shall do this most clearly by help of a geometrical construction. Let the (N)
values of the first Error be measured from A according to their signs along the indefinite
line MR ; likewise measure the (n) values of the second Error along CD, where AD=a,
AC=b. Take any two values, Al=x, of the first, and AK=ux of the second; they give
a value #+4a, of the compound Error, to which will correspond a point P of the plane,

whose coordinates are x, ,. 'The number of such points contained within the element
MDCCCLXX. 2B
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dx dz,, each point corresponding to a compound error, will be

gy, de dx, or fla,)e(x)dS,
dS being the element of the area. Draw through P a line UV equally inclined to the
axes, then 4, is constant along thisline; put é=a-+x,=AV, take Vv=d§, and draw
uv parallel to UV; take Kk=dx, then the number of points within the elementary
parallelogram PQpg will be
JE—)o(w)dt da.

Hence the whole number of points between the parallels UV and wwv (that is, the number
of compound errors whose magnitudes lie between £ and £+ dg) will be

d%j: JE—a)p(x)da.

The total number of compound errors thus obtained will be N2 ; however, for uni-
formity, we will suppose the number of observations taken, affected with the compound
Error, to be N, the same as for (6). This will oblige us to divide by

n=‘f:fp (x)da.

Thus if we represent the compound Error by a curve whose coordinates are (&, 7), it
will be

(" fe—ajo@yi
n=E s
ji_bqo(x)dx

Thus if we wish to find the Frror resulting from the combination of the two Errors
whose equations are

(7)

Ca N' _@—p»
2 2

,!/=m6 e,

I=1v=’

we have from formula (7) (N, N’ denoting the numbers of observations),
N (o _(-a-ap _@=py?
1=15s) ¢ e ¢ dua,

whence
N _(g=a=p)®
Hence it is easy to see that if any number of Errors of the forms
N G- N _@=pr NI Gy
I=g ¢ Y=gy’ R e v &e.

be combined, the resultant Error will be

N _(zfe—:—ﬁ—‘pv—- o) g
= ¢ FHEHE L
J Va@?+e2+42+....) (8)

Expanding f((—«) in formula (7), it becomes
1=~ O+, (O3S O+ &
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where
j a*p(x)da fx“’go(w)dx
A=t o=v3?

-§j6x¢(a')dw
f J‘;cp(x)dx ’ j‘jbcp(x)dx ’

3 &e.,
o(x)dx
—b

9

e being the mean value of the Error y=¢(2), A its mean square, ¢ its mean cube, &c.
7. In the problem of finding the law of error resulting from the superposition of a
great number of Errors, each of very small importance by itself, we will consider each
component Error as the diminutive of some Error of finite importance* (see art. 5).
Thus if y=F(x) be some possible finite Error, and we reduce its dimensions in the

ratio 4, where ¢ is infinitesimal, the diminished Frror will be %:F(%); and if the
mean value, mean square, mean cube, &c. of the former be called
E, E, E;,.....
it is easy to see that the same means, for the reduced Error, will be
By, °E,, @E,, .. ...

Now adopting the usual axiom that no function can represent a finite Error unless
E, E, E,, . ...are finite, it follows that the mean cube, mean 4th power, &c. of the

# Thus all conceivable cases of Errors whose extreme limits, or amplitude, are very small, are contained in
the above method of proof; also those small Errors which, though their extreme amplitude be not very small, are
merely possible finite Errors (of great or infinite amplitude) on a reduced scale. It is mecessary, however, to
observe, in examining the nature of all the minute simple Errors which our hypothesis in its generality com-
prises, that there are cases quite conceivable, and involving no absurdity, of simple Errors of trivial or infini-
tesimal importance which come under neither of these categories, and to which the method in the text will
not apply. To give a simple instance, imagine an occasional source of Error, which rarely operates, but which,
when it does, gives a fixed finite error % (thus we may conceive an observer to mistake, once in a thousand
times, the succeeding division of his instrument for the true one). Let this happen on an average once for n
times that the cause is not in operation (n being supposed very great) ; then the mean value of the Error is

2
T its mean square is 'Z-cl—_l , & It is therefore of infinitesimal importance whether, with Larrace, we
n

estimate the émportance of an Error by its mean value (irrespective of sign), or, with Gauss, by its mean square ;
but as its mean cube &c. cannot be rejected in comparison with the mean square, the above analysis cannot be
applied to it. Minute simple Errors of such a description must then be excepted from those which are supposed
to enter into the composition of the actual errors of observations. If an appreciable number of them did enter,
the received exponential law could not hold for the compound Error. Thus were we to combine a large number
of small Errors of the nature of the simple instance just cited, the resultant Error would be of a discontinuous
nature, represented by groups of coincident points, with finite intervals between them.

Though it is necessary clearly to understand that the full generality of the hypothesis is restricted by the
exceptions explained in this note, yet there secems every reason to suppose that such cases are too rare in practice
to cause any sensible deviation from the exponential law of error, the great majority of the minute component
Frrors which jointly affect any -observation ¢n rerum naturd having each, it is natural to suppose, a very minute
range or amplitude.

282
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diminutive Error may be rejected in comparison with its mean square*. We infer,
therefore,

If y=/f(a) represent any Error of indefinite amplitude, and if a new Error, y=¢(x),
of indefinitely small importance as compared with it, be superposed, the resulting compound
Error will be represented by the equation

y=f@)—o s f@) 5 S @) e (9)
where w, A are infinitesimal constants, viz. the mean value of the new Error and the
mean value of its squaret, the number of observations being supposed the same for the
Error (9) as for the former, y=f{(z).

If we now conceive y=¢(«) in the above to be one of a large number of independent
infinitesimal Errors, and y=f{x) to be the compound finite Error resulting from the
combination of all the others, we infer from (9) that each elementary Error y=g¢(z)
affects the law of the combined Errors in a manner which only involves («) the mean
value of the elementary Error, and () its mean square. But if this be so, we may, for
our present purpose, substitute for y==¢(2) any other Error whatever which has the
same mean value and mean square (provided of course its mean cube &c. may be neg-
lected in comparison with its mean square). 'We may therefore for our purpose replace

y=g¢(x) byl .
n _ama -
y= VQW(A; Q) e 2(A—a ), . . . . . . . . . . (10)

which fulfils these conditions.
Likewise, if there be another elementary Error whose mean value is 3 and mean square
w, we may replace it by

nl _ (x—pY?
e ——— 2(u—B%)
V= Von(u—p ’

and so on, for all the elementary Errors. Hence (see equation 8) the Error compounded
of any number of them will be

N _ (@—a—B—y—...)?
J= VorAtptvt. . . —al— == )

e 2Atpt..—o?—pi— )

# We cannot neglect the mean square as compared with the mean 1st power, as the latter is the algebraical
sum of a number of positive and negative elements, which sum may be of any amount, however small, and may
sometimes vanish altogether; whereas the former is the sum of a number of positive clements, and therefore
cannot vanish.

+ If the new Error be such as to give any discontinuous distribution of points (see art. 4), it is easy to satisfy
ourselves, by the method of art. 6, that the above proposition still holds good. In fact, if the n values of the
new Error be @, @,, @, . . . ., we shall have, instead of the formula (7),

1
r= =) A=) )+ e,
which is true in all cases, whether the distribution be continuous or discontinuous, or a mixture of both; and
hence the formula (9) will follow.
I This suggestion is due to Professor J. C. Apawms, one of the Referees charged by the Royal Society with the

duty of reporting upon the present Paper. The remainder of the proof, which was of a different nature in the
Paper as originally presented, is much simplified thereby. )
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We conclude therefore that if a great number of minute independent Errors be com-
bined, and if we write

m=a +£ +v +. ...=sum of mean Errors, *
h=nr +w +v +....=sum of mean squares of Errors,p. . . . (11)
i=a*+4L+9*+. .. .=sum of squares of mean FErrors,
the resulting function of Error will be
N _(g—m)?
y=me =D, L L s s e e e e (12)
The Probability of an error being found to lie between # and &+ dz is of course
7;_)71(7—:7—)3—%«”73) dz.

If positive and negative errors in the observation are equally probable, as generally
can be secured in practice, at least approximately, then m=0; that is, the sum of the
mean values of the elementary component Errors vanishes, and the Probability is ex-
pressed by the usual value

1
’ me adx.

If we calculate by integration from equation (12) the mean value of the composite
Error (or, as Gauss calls it, ¢he constant part of the Error) and the mean value of its
square, we shall find

Mean Error=m=sum of mean values of component Errors,
Mean Square of Error=h-+4m*—1.

We have thus a verification of the correctness of our analysis, as the same results may
be found from independent algebraical computation.

8. Considering the celebrity of the question, it may not be superfluous to show how
the result might have been obtained without any antecedent knowledge of the peculiar
property of combination of the Errors in equation (8).

* We may observe that A—¢ is always positive ; for if we take any set of numbers, positive or negative, the
mean of their squares is always greater than the square of the mean (see TopmuNrer’s ¢ Algebra,” p. 407).
Therefore

A>a?, also >0, » > v?, &e.
Consequently &> 1.

+ This expression will be found to agree with Porsson’s final result in the memoir already cited.
i If
U=a+b+c+d+&e.,

where each of the quantities a, b, ¢, d, &c. may take any number (different for each quantity) of different
independent values, adopting for shortness the symbol M(XK) for “the mean value of K,” it is not difficult to
prove, by elementary algebra, that

M(U)=M(a) + M(b)+M(c) + &c.= =M(a),
M(U?)=M(a?) + M)+ M() +. . . .+ 22{M(a)M()},
M(U)=32M(a?) + {ZM(a)}*— = {M(a)}>

or
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Let us suppose all the infinitesimal simple Errors which it is proposed to combine to
be successively superposed upon some assumed function of Error y=f{z); then by

equation (9) the new function arising from the first of them will be, putting D::d%,

A
y= (1—aD+§ D2> £(2).
If another be now superposed upon this, we shall have
y=(1-pD+5D?) (1 — D+ Dﬂ) fa),

and finally the function arising from the superposition of all the given Errors upon the
assumed Error y=f{x) will be

g (1_aD+gD2) (1-pD+5 D2) (1—yD+-;-D2> Sl .. (19)
But as e, A are infinitesimals, we have, retaining the square of «,

A
1—aD 5 D2 gD +a0met,

Thus (13) will become
y=e—(u+ﬁ+'y+.. cODHAA— ot p—p2E. .)sz(x)’

or, adopting the notation (11),

Y=g ()= e—m). . . . . . . (14)
9. Let us now take as the assumed function of Frror
—-f(x)_evwe oL (15)

(where N is the number of observations), and imagine the whole given system of small
Errors superposed upon it; the resulting function is

x—m)?

AB=ID T

N
y_h/w

Now by a theorem in the Differential Calculus¥,

ka®
e T 144ak :

eaD e—k.r
V1 +4ak

* This theorem, which is new to the present writer, may be proved in various ways. Thus if we put
u=eaDie—-Im9’

and differentiate with regard to a, we have

gu—-e“DgDQe"‘xg—e“W@k?x —2k)e=ka*

again,
du
dk

we thus obtain the partial differential equation

— eaDQ( —e— IM?)

du L du _
%-1-470 Wc+27cu_0,
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hence
N (2—m)?

Y= e vai—nre’ "

Now we may here assume @ as small as we please*,—that is, we may assume the Error
(15) upon which the given system was superposed, to be of as small importance as we
please. 'We conclude, then, rejecting this Error altogether, that a system of very small
Errors, when combined, give for the resulting function of Error

N (z=m)?

as before.

the integral of which is
u=k“%¢<4a+%).

To determine the arbitrary function ¢, we remark that if a=0, u=e~#>*,

eyl
ka?

- 2 N1 —
u=k—é(4a+71) zke"”’ (4“+k) =(1+4ak)—te 1+1ak,
(4

hence

Another proof may be obtained by employing Porssox’s ingenious transformation (Traité de Mécanique, tom. 1i.
p. 356), which gives : .

e“msb(”)::/l?j
# In order that we may retain the three first terms only in the expansion
! A' 1
y=f(x)—af (x)+§f x—&e.,

(#) and the succeeding differential coefficients are not infinite. Now they
generally will be infinite in the case where y=jf(#) is an infinitesimal Error, as f(«) will be of the form

* =420 ¥ @) do,

"

it is mecessary to show that f

K(p(f), where e is infinitesimal ; but in the case where
€

2

.. N -%
y—‘f(m)—éme ¢,

we may take 6 as small as we please, and yet retain only the three first terms above, because the differential
coefficients of  do not here become infinite; in fact it is easy to see that any differential coefficient

3_:;1/ will consist of a series of terms of the form

7
2

&£
C'—Tfe o
0"

now by the rules in the Differential Calculus for evaluating indeterminate forms, this quantity tends to zero
as 0 diminishes.



